

A Note on Visualizing the Optimal Time for Closing a Momentum Trade

Reza Habibi

Iran Banking Institute, Central Bank of Iran

*Corresponding Author: Reza Habibi, Iran Banking Institute, Central Bank of Iran

ABSTRACT

In this paper, a simple method is presented to visualize the optimal time for closing a momentum trade. The decision criterion is based on discounted financial asset price (like stock) at which discounted price is computed with a minimum attractive rate of return. It is seen that as soon as, the discounted price starts decreasing is the best time for closing a momentum trade.

Keywords: Geometric Brownian motion; Momentum trade; Stopping time

INTRODUCTION

Ekstrom and Lindberg (2011) proposed a strategy, based on Bayesian posterior probability, for optimal closing time of a momentum trade. They supposed that the financial asset price (say a stock) obeys a geometric Brownian motion with a change point in drift. Indeed, they assumed that

$ds = \mu_t s dt + \sigma s dB,$

where *B* is a Brownian motion and $\mu_t = \theta_1$ for $t \le \tau$ and $\mu_t = \theta_2$ for $t > \tau$. The optimal strategy solution is obtained by

$$V = max_{\tau^* \in F} E(e^{-r\tau^*}s_{\tau^*}),$$

where F is the collection of all stopping times τ^* . However, one can see that

$$E(e^{-rt}s_t) = \begin{cases} (\theta_1 - r) & t \leq \tau\\ (\theta_1 - \theta_2)\tau - (r - \theta_2)t & t > \tau. \end{cases}$$

This function attains its maximum at τ if $\theta_2 < r < \theta_1$. If $\tau < \infty$ with probability one, then $E(e^{-r\tau^*}s_{\tau^*}) = E(e^{-rt}s_t)$, using the optional sampling theorem. Indeed, for all $\tau^* < \infty$, then $E(e^{-r\tau^*}s_{\tau^*})$ attains its maximum at τ . Here, conditions are extracted to make sure that

$$M_t = \frac{e^{-rt}s_t}{E(e^{-rt}s_t)'}$$

is close to 1 and then $e^{-rt}s_t$ is used instead of $E(e^{-rt}s_t)$. It is easy to see that

$$M_t = \exp\left(\sigma B - \frac{\sigma^2 t}{2}\right) = \exp\left(\sigma (B - \frac{\sigma t}{2})\right),$$

and that M_t is a martingale with respect to filtration $\sigma(B_u, u \le t)$, i.e., the sigma-field generated by $(B_u, u \le t)$. It is clear that when $\sigma \to 0$, then $M_t \to 1$. Also, Doob inequality (see Bjork, 2009) implies that, for some maturity L, then $P(sup_{0\le t\le L}M_t > \varepsilon) \le \frac{E(M_L^{\alpha})}{\varepsilon^{\alpha}}$ for some $0 < \alpha < 1$. Also, $E(M_L^{\alpha}) = \frac{-\alpha(1-\alpha)\sigma^2}{2}L$. Thus, $\frac{E(M_L^{\alpha})}{\varepsilon^{\alpha}} = \exp\left(-\alpha\left\{\frac{(1-\alpha)\sigma^2}{2}L + \log(\varepsilon)\right\}\right) \le$ $\exp\left(-\alpha\left\{\frac{\sigma^2}{2}L + \log(\varepsilon)\right\}\right)$. Assuming $\frac{\sigma^2}{2}L = -\log(\varepsilon)$, then $L = \frac{-2\log(\varepsilon)}{\sigma^2}$.

Assuming $\frac{1}{2}L = -\log(\varepsilon)$, then $L = \frac{1}{\sigma^2}$. Thus, by sequentially search for existence of momentum during intervals with length L, recursively, as soon as $e^{-rt}s_t$ starts to decrease, that time point is a suitable point for selling the asset. The following proposition summarizes the above discussion.

Proposition 1

Assuming $L = \frac{-2\log(\varepsilon)}{\sigma^2}$, by search recursively time intervals with length L, the momentum is detected.

Proof. It is discussed in section 1.

Thus, the estimate for τ is the time point at which $e^{-rt}s_t$ attains its maximum. That is,

$$\hat{\tau} = \operatorname{argmax}_t \{ e^{-rt} s_t \}.$$

Since, $e^{-rt}s_t$ is too close to its mean and $E(e^{-rt}s_t)$ takes its maximum at actual change

Visualizing the Optimal Time for Closing a Momentum Trade

point τ , thus, $\hat{\tau}$ is a consistent estimator for τ . The following proposition summarizes this fact.

Proposition 2

The estimator $\hat{\tau}$ is a consistent estimator for τ .

The rest of paper is organized as follows. First, the simulation results are derived in the next section. Section 3 concludes.

SIMULATIONS

Here, using the *Model Risk* adds-in of Excel, this case is simulated that $\theta_1 = 0.002, \theta_2 = 0.007, \tau = 543$, initial value of stock is 0.38 \$,

 $\sigma = 0.025$ and $\varepsilon = 0.01$. Let r = 0.005. The time period of study is 1000 days. The following plot shows the time series of $e^{-rt}s_t$ which implies that there is a change about 543.

Figure 1. Time series plot of $e^{-rt} s_t$

While the time series of s_t is given as follows. However, the Fig.1. has better visual interpretation.

Figure2. *Time series plot of* s_t

As follows, the empirical distribution of $\hat{\tau}$ is given. Clearly, $\hat{\tau}$ is concentrated well on actual momentum time τ .

Figure 3. Histogram of $\hat{\tau}$

Here, a threshold *K* is given such that $P(max_t e^{-rt} s_t \le K) = 1 - \alpha$. The following table gives some values for K, for various selections for α .

Table 1: Values of K

α	0.1	0.05	0.025	0.01
K	2.71	3.42	3.79	4.81

CONCLUSION

The argmax time point of $e^{-rt}s_t$ is a consistent estimator of actual momentum point. The time series plot of $e^{-rt}s_t$ has a good visualization for momentum time point.

REFERENCES

- [1] Bjork, T. (2009). *Arbitrage theory in continuous time*. Oxford University Press. UK.
- [2] Ekstrom, E. and Lindberg, C. (2011). Optimal Closing of a Momentum Trade. *Technical report*. Gothenburg Mathematical Modeling Centre (GMMC). Sweden.

Citation: Reza Habibi." Visualizing the Optimal Time for Closing a Momentum Trade". (2018). Journal of Banking and Finance Management, 1(3), pp.17-18

Copyright: © 2018 Muhammad Abdul Kabeer, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.